Call Symput

Mastering the Art of Call SYMPUT in SAS: A
Comprehensive Guide

The SAS "CALL SYMPUT" procedure is a powerful tool for dynamic macro variable creation and
manipulation. Unlike the “%LET" statement, which creates macro variables within the macro
language processor, "CALL SYMPUT" creates macro variables within the data step, allowing you
to leverage data step processing to define your macro variables. This flexibility proves
invaluable for creating dynamic and adaptive SAS programs, particularly in scenarios where
variable names or values need to be determined during data processing. This article will provide
a comprehensive overview of "CALL SYMPUT", exploring its functionality, syntax, usage
scenarios, and potential pitfalls.

Understanding the Syntax and Functionality

The core syntax of “CALL SYMPUT" is straightforward:

“'sas
CALL SYMPUT('macro-variable-name', value);

Here:

'macro-variable-name': This is a character string representing the name of the macro variable
you wish to create or modify. It must be enclosed in single quotes.

value: This is the value assigned to the macro variable. It can be a numeric value, a character
string (also enclosed in single quotes), or a SAS variable's value.

Call Symput

Crucially, "CALL SYMPUT" operates within the data step context. This means the macro
variable's value is determined by the current row being processed. This opens up possibilities
for creating macro variables based on aggregated data, conditional logic, or even iterating
through datasets.

Practical Examples: Unveiling the Power of
CALL SYMPUT

Let's explore several practical applications to illuminate the utility of *CALL SYMPUT".
Example 1: Creating a macro variable based on a dataset's summary statistic:

Suppose we have a dataset “sales™ with a variable "sales_amount’. We want to create a macro
variable “total_sales” containing the sum of “sales_amount’.

"'sas
data null_;
set sales end=eof;
sales_sum + sales_amount;
if eof then do;
call symput('total_sales', sales_sum);
end;
run;

%put The total sales are: &total sales;

This code calculates the sum and then uses "CALL SYMPUT" to assign it to the macro variable
“total_sales’. The "%PUT" statement then displays the value of this newly created macro
variable.

Example 2: Dynamically creating macro variables based on conditional logic:

Imagine we want to create a macro variable “highest_region’ indicating the region with the
maximum sales.

sas
proc sqgl noprint;

Call Symput Published at globaldatabase.ecpat.org [2]

Call Symput

select region

into :highest region

from sales

group by region

having sum(sales_amount) = max(sum(sales_amount));
quit;

%put The highest selling region is: &highest_region;

While this example uses "PROC SQL’, the principle remains the same. The result of the SQL
query is assigned to the macro variable “highest _region” using the implicit *CALL SYMPUT"
functionality of "PROC SQL"'s "INTO" clause.

Example 3: Iterating through a dataset to create multiple macro variables:

Let's say we have a dataset listing product names and their prices, and we want to create a
macro variable for each product's price.

"'sas
data null ;
set products;
call symput(cats('price_', product_name), product_price);
run;

%put The price of Product A is: &price_ProductA;

This utilizes the "CATS" function to dynamically construct the macro variable name, creating a
unique variable for each product's price.

Advanced Techniques and Considerations

Data Step Scope: Remember that "CALL SYMPUT" creates global macro variables, accessible
throughout your SAS session.

Overwriting Variables: If a macro variable with the specified name already exists, "CALL
SYMPUT" will overwrite its value.

Error Handling: While not explicitly part of the syntax, robust error handling should be

Call Symput Published at globaldatabase.ecpat.org [3]

Call Symput

incorporated, particularly when dealing with potential issues like missing data or unexpected
values.

Best Practices: Use descriptive macro variable names to enhance readability and
maintainability. Always clearly document the purpose and usage of macro variables created
using “CALL SYMPUT".

Conclusion

"CALL SYMPUT" is a pivotal tool for building adaptable and efficient SAS programs. By
dynamically creating and manipulating macro variables within the data step, it facilitates the
development of complex data-driven applications. Mastering its functionality empowers users to
automate tasks, simplify processes, and significantly enhance the flexibility of their SAS code.
Understanding its intricacies, as detailed in this guide, is key to harnessing its full potential.

Frequently Asked Questions (FAQs)

1. Can | use "CALL SYMPUT" within a "PROC" step? No, "CALL SYMPUT" is specifically designed
for use within the data step.

2. What happens if the value assigned to the macro variable is missing? The macro variable will
be created but will contain a missing value. Proper error handling should account for this.

3. Can | use special characters in macro variable names created with “CALL SYMPUT ? While
possible, it’s generally best practice to avoid special characters to prevent potential conflicts
and enhance readability.

4. How do | delete a macro variable created with "CALL SYMPUT ? Use the "%LET" statement
with a null value: “%LET my_macro_variable=;".

5. What is the difference between "CALL SYMPUT and "%LET ? "%LET" creates macro variables
within the macro language processor, while "CALL SYMPUT" creates macro variables within the
data step, allowing for dynamic value assignment based on data processing.

Call Symput Published at globaldatabase.ecpat.org [4]

Call Symput

Formatted Text:

how long is 30 cm
8-hours-ip-minutes
659 to 0z

56mm in inches
107-inch-toem

14 kg to Ib

100 oz to gallons

720 mm in inches
140cm in feet

43kg in Ibs

185 ctof

141 inches to feet
135kg to Ib

51cm in inches

620 mm in inches

Search Results:

Solved: CALL SYMPUT vs CALL SYMPUTX - SAS Support ... 20 Jul 2017 - CALL SYMPUT() and CALL
SYMPUTX() will convert numbers to text using BEST12. format. If you want to preserve the
format attached to a number then either convert it to character yourself or use the VVALUE() (or
VVALUEX()) function to get the formatted value.

call symput with a do loop - SAS Support Communities 23 Oct 2018 - Also make sure to
use the newer CALL SYMPUTX() function instead of the old CALL SYMPUT() function. Unless you
really NEED to store non macro quoted trailing blanks into your macro variables. 2 Likes

Call symput not working as expected - SAS Communities 11 Dec 2016 - Hi, | have the below call
symput statements, when | run for the first time &st_dt. and &en_dt. wont resolve to actual

values, but the second run resolves it. Could you please let me know why? First run has the
warnings in the log saying that ...

call symputx vs. symput - SAS Support Communities 4 May 2022 - CALL SYMPUTX uses a
field width of up to 32 characters when it converts a numeric second argument to a character
value. CALL SYMPUT uses a field width of up to 12 characters. CALL SYMPUTX left-justifies both
arguments and trims trailing blanks. CALL SYMPUT does not left-justify the arguments, and
trims trailing blanks from the first argument only.

%let VS call symput(s) - SAS Communities 27 Nov 2017 - with the call symput(s) : jour jour . It's

Call Symput Published at globaldatabase.ecpat.org [5]

Call Symput

the "**bleep**" when we use quotes in the %let , for example when the value must be contain
spaces ! In the present case it's very dangerous , it's "better" to use call symput(s) . You own a
solution to around this problem ?

[SAS 000007 000 00 - CALL SYMPUT [SAS 000001 000 00 - CALL SYMPUT 00000~ ~ 00 0000 SAS [
00 0000 0000 0000 0000 000 000 0O00 CALL SYMPUT macro routine] 00 00000 O00CO- OO CALL
SYMPUT([000 00 DOOOO. CALL SYMPUT (“macro-variable”, value); CALL SYMPUT[] DATA step[[]
value ...

Solved: Call symput - Macro date? - SAS Support Communities 16 Oct 2018 - Solved:
Hello: I would like to have create a system today format with YYYY_MM_DD. Something wrong
with my code below, could someone help me to fix

Use a macro variable created with the CALL SYMPUT routine inside ... 25 Apr 2023 -
"The macro variable created by CALL SYMPUT can not be referenced inside the creating data
step. But CALL EXECUTE, SYMGET and RESOLVE can be used to reference a macro variable with
in the data step. " This is then followed up with "CALL EXECUTE statements get resolved first
and then moved to the input stack while iterating the data step.

Solved: Understanding Call Symput! - SAS Support Communities 4 Apr 2013 - Re: Understanding
Call Symput! Posted 04-04-2013 10:19 AM (4584 views) | In reply to robertrao Yes macro
variables ID1 and ID2 with the values F and M respecfively.

Solved: When to use symput or symget? - SAS Communities 13 Mar 2012 - You use CALL
SYMPUT (or better CALL SYMPUTX as it is more flexible) to create macro variables from data
step values. You use SYMGET to get macro variable values. Usually you can just reference the

macro variable instead. Here are some situations where you would want to ...

Call Symput

Mastering the Art of Call SYMPUT in SAS: A
Comprehensive Guide

The SAS "CALL SYMPUT" procedure is a powerful tool for dynamic macro variable creation and

manipulation. Unlike the "%LET" statement, which creates macro variables within the macro language
processor, "CALL SYMPUT" creates macro variables within the data step, allowing you to leverage
data step processing to define your macro variables. This flexibility proves invaluable for creating
dynamic and adaptive SAS programs, particularly in scenarios where variable names or values need
to be determined during data processing. This article will provide a comprehensive overview of “CALL
SYMPUT", exploring its functionality, syntax, usage scenarios, and potential pitfalls.

Call Symput Published at globaldatabase.ecpat.org [6]

Call Symput

Understanding the Syntax and Functionality

The core syntax of "CALL SYMPUT" is straightforward:

“'sas
CALL SYMPUT('macro-variable-name', value);

Here:

'macro-variable-name': This is a character string representing the name of the macro variable you
wish to create or modify. It must be enclosed in single quotes.

value: This is the value assigned to the macro variable. It can be a numeric value, a character string
(also enclosed in single quotes), or a SAS variable's value.

Crucially, "CALL SYMPUT" operates within the data step context. This means the macro variable's
value is determined by the current row being processed. This opens up possibilities for creating macro
variables based on aggregated data, conditional logic, or even iterating through datasets.

Practical Examples: Unveiling the Power of CALL
SYMPUT

Let's explore several practical applications to illuminate the utility of “CALL SYMPUT".
Example 1: Creating a macro variable based on a dataset's summary statistic:

Suppose we have a dataset "sales™ with a variable “sales_amount’. We want to create a macro
variable “total sales’ containing the sum of "sales_amount’.

"'sas
data null_;
set sales end=eof;
sales_sum + sales_amount;
if eof then do;
call symput('total_sales', sales_sum);

Call Symput Published at globaldatabase.ecpat.org [7]

Call Symput

end;
run;

%put The total sales are: &total sales;

This code calculates the sum and then uses "CALL SYMPUT" to assign it to the macro variable
“total_sales’. The "%PUT" statement then displays the value of this newly created macro variable.

Example 2: Dynamically creating macro variables based on conditional logic:

Imagine we want to create a macro variable “highest _region indicating the region with the maximum
sales.

"'sas
proc sql noprint;
select region
into :highest region
from sales
group by region
having sum(sales_amount) = max(sum(sales_amount));
quit;

%put The highest selling region is: &highest_region;

While this example uses "PROC SQL’, the principle remains the same. The result of the SQL query is
assigned to the macro variable “highest _region using the implicit "CALL SYMPUT" functionality of
"PROC SQL™'s "INTO" clause.

Example 3: Iterating through a dataset to create multiple macro variables:

Let's say we have a dataset listing product names and their prices, and we want to create a macro
variable for each product's price.

"'sas
data null_;
set products;
call symput(cats('price_', product_name), product price);
run;

%put The price of Product A is: &price_ProductA;

Call Symput Published at globaldatabase.ecpat.org [8]

Call Symput

This utilizes the "CATS" function to dynamically construct the macro variable name, creating a unique
variable for each product's price.

Advanced Techniques and Considerations

Data Step Scope: Remember that "CALL SYMPUT" creates global macro variables, accessible
throughout your SAS session.

Overwriting Variables: If a macro variable with the specified name already exists, "CALL SYMPUT" will
overwrite its value.

Error Handling: While not explicitly part of the syntax, robust error handling should be incorporated,
particularly when dealing with potential issues like missing data or unexpected values.

Best Practices: Use descriptive macro variable names to enhance readability and maintainability.
Always clearly document the purpose and usage of macro variables created using “CALL SYMPUT".

Conclusion

"CALL SYMPUT" is a pivotal tool for building adaptable and efficient SAS programs. By dynamically
creating and manipulating macro variables within the data step, it facilitates the development of
complex data-driven applications. Mastering its functionality empowers users to automate tasks,
simplify processes, and significantly enhance the flexibility of their SAS code. Understanding its
intricacies, as detailed in this guide, is key to harnessing its full potential.

Frequently Asked Questions (FAQSs)

1. Can | use "CALL SYMPUT" within a "PROC" step? No, "CALL SYMPUT" is specifically designed for use
within the data step.
2. What happens if the value assigned to the macro variable is missing? The macro variable will be

Call Symput Published at globaldatabase.ecpat.org [9]

Call Symput

created but will contain a missing value. Proper error handling should account for this.
3. Can | use special characters in macro variable names created with “CALL SYMPUT" ? While possible,
it's generally best practice to avoid special characters to prevent potential conflicts and enhance

readability.

4. How do | delete a macro variable created with “CALL SYMPUT ? Use the "%LET" statement with a
null value: “%LET my_macro_variable=;".
5. What is the difference between "CALL SYMPUT" and "%LET ? "%LET" creates macro variables
within the macro language processor, while “CALL SYMPUT" creates macro variables within the data
step, allowing for dynamic value assignment based on data processing.

how long is 30 cm

3000 ft to miles

189Ibs to kg

135 cm to inches

98 degrees fahrenheit to celsius

Solved: CALL SYMPUT vs CALL
SYMPUTX - SAS Support ... 20
Jul 2017 - CALL SYMPUT() and
CALL SYMPUTX() will convert
numbers to text using BEST12.
format. If you want to preserve
the format attached to a
number then either convert it to
character yourself or use the
VVALUE() (or VVALUEX())
function to get the formatted
value.

call symput with a do loop -
SAS Support Communities
23 Oct 2018 - Also make sure to
use the newer CALL SYMPUTX()
function instead of the old CALL
SYMPUT() function. Unless you

really NEED to store non macro
quoted trailing blanks into your
macro variables. 2 Likes

Call symput not working as
expected - SAS Communities 11

Dec 2016 - Hi, | have the below
call symput statements, when |
run for the first time &st_dt.
and &en_dt. wont resolve to
actual values, but the second
run resolves it. Could you
please let me know why? First
run has the warnings in the log

saying that ...

call symputx vs. symput -
SAS Support Communities 4
May 2022 - CALL SYMPUTX uses

a field width of up to 32
characters when it converts a
numeric second argument to a
character value. CALL SYMPUT
uses a field width of up to 12
characters. CALL SYMPUTX left-
justifies both arguments and
trims trailing blanks. CALL
SYMPUT does not left-justify the
arguments, and trims trailing
blanks from the first argument
only.

%let VS call symput(s) - SAS
Communities 27 Nov 2017 -
with the call symput(s) : jour
jour . It's the "**bleep**" when
we use quotes in the %let, for
example when the value must

Call Symput Published at globaldatabase.ecpat.org [10]

https://globaldatabase.ecpat.org/files/textbooks/Directory:F2C8/fetch.php/How_Long_Is_30_Cm.pdf
https://globaldatabase.ecpat.org/pdf/sign-pdf-form/Publication:C0O7/index_htm_files/3000_ft_to_miles.pdf
https://globaldatabase.ecpat.org/files/form-signup/Files:M0I3/_pdfs/189lbs_To_Kg.pdf
https://globaldatabase.ecpat.org/pdf/papersCollection/Sitewide/I2L2/_pdfs/135_Cm_To_Inches.pdf
https://globaldatabase.ecpat.org/pdf/book-explore/PDF_Files:M5A4/fetch.php/98_Degrees_Fahrenheit_To_Celsius.pdf

Call Symput

be contain spaces ! In the
present case it's very
dangerous , it's "better" to use
call symput(s) . You own a

solution to around this problem
?

[SAS 00007 000 00 - CALL
SYMPUT [SAS (00001 000 00 -
CALL SYMPUT 0000~ 00 0000
SAS (00 0000 DO00 o0 codo 0
00 000 0000 CALL SYMPUT

macro routine(] (0] 00000 COOOC.

00 CALL SYMPUTL 000 00 0OC0OC.

CALL SYMPUT (“macro-
variable”, value); CALL SYMPUT
[DATA step[]{ value ...

Solved: Call symput - Macro
date? - SAS Support
Communities 16 Oct 2018 -
Solved: Hello: I would like to
have create a system today

format with YYYY MM DD.
Something wrong with my code
below, could someone help me
to fix

Use a macro variable
created with the CALL
SYMPUT routine inside ... 25
Apr 2023 - "The macro variable
created by CALL SYMPUT can
not be referenced inside the
creating data step. But CALL
EXECUTE, SYMGET and
RESOLVE can be used to
reference a macro variable with
in the data step. " This is then
followed up with "CALL
EXECUTE statements get
resolved first and then moved
to the input stack while
iterating the data step.

Solved: Understanding Call

Symput! - SAS Support
Communities 4 Apr 2013 - Re:

Understanding Call Symput!
Posted 04-04-2013 10:19 AM
(4584 views) | In reply to
robertrao Yes macro variables
ID1 and ID2 with the values F
and M respecfively.

Solved: When to use symput or
symget? - SAS Communities 13
Mar 2012 - You use CALL
SYMPUT (or better CALL
SYMPUTX as it is more flexible)
to create macro variables from
data step values. You use
SYMGET to get macro variable
values. Usually you can just

reference the macro variable
instead. Here are some
situations where you would
want to ...

Call Symput Published at globaldatabase.ecpat.org [11]

